Sodium, ATP, and intracellular pH transients during reversible complete ischemia of dog cerebrum.
نویسندگان
چکیده
We tested the hypotheses that with the onset of cerebral ischemia, massive cellular sodium influx does not occur until adenosine triphosphate is fully depleted and that on reperfusion, neuronal sodium efflux does not occur until adenosine triphosphate is fully restored. We examined the temporal relationships among transcellular sodium, energy metabolism, and intracellular pH with sodium and phosphorus magnetic resonance spectroscopy in a new, hemodynamically stable, brain stem-sparing model of reversible, complete cerebral ischemia in eight anesthetized dogs. Inflation of a neck tourniquet after placement of glue at the tip of the basilar artery resulted in decreased blood flow to the cerebrum from 29 +/- 5 to 0.3 +/- 0.5 ml/min/100 g. Medullary blood flow was not significantly affected, and arterial blood pressure was unchanged. Sodium signal intensity decreased and did not lag behind the fall in adenosine triphosphate. After 12 minutes of ischemia, reperfusion resulted in a more rapid recovery of sodium intensity (12.4 +/- 4.8 minutes) than either adenosine triphosphate (16.5 +/- 3.7 minutes) or intracellular pH (38.9 +/- 1.8 minutes). Because intracellular sodium has a weaker signal than extracellular sodium, the decreased sodium intensity is interpreted as sodium influx and indicates that sodium influx does not require full depletion of adenosine triphosphate. Rapid recovery of sodium intensity during early reperfusion may represent sodium efflux, although increased plasma volume and sodium uptake from plasma may also contribute. If our interpretation of the sodium signal is correct, delayed recovery of adenosine triphosphate may be due to the utilization of adenosine triphosphate for the restoration of transcellular sodium gradient.
منابع مشابه
Na-P(i) cotransporter type I activity causes a transient intracellular alkalinization during ATP depletion in rabbit medullary thick ascending limb cells.
The cellular pathophysiology of renal ischemia-reperfusion injury was investigated in primary cell cultures from rabbit medullary thick ascending limb (MTAL). Metabolic inhibition (MI) was achieved with cyanide and 2-deoxyglucose. Sixty minutes of MI caused a profound but reversible decrease in intracellular concentration of ATP ([ATP]i). Intracellular pH (pHi) first decreased after initiation ...
متن کاملMetabolic inhibition reduces cardiac L-type Ca2+ channel current due to acidification caused by ATP hydrolysis
Metabolic stress evoked by myocardial ischemia leads to impairment of cardiac excitation and contractility. We studied the mechanisms by which metabolic inhibition affects the activity of L-type Ca2+ channels (LTCCs) in frog ventricular myocytes. Metabolic inhibition induced by the protonophore FCCP (as well as by 2,4- dinitrophenol, sodium azide or antimycin A) resulted in a dose-dependent red...
متن کاملEffect of cerebral blood flow generated during cardiopulmonary resuscitation in dogs on maintenance versus recovery of ATP and pH.
BACKGROUND AND PURPOSE Cardiopulmonary resuscitation with external chest compression generates low perfusion pressures that may be inadequate for restoring cerebral metabolism and may worsen intracellular pH. We tested the hypothesis that cerebral reperfusion with a low perfusion pressure after arrest restores brain adenosine triphosphate (ATP) and pH to levels attained at the same perfusion pr...
متن کاملEffects of anoxia, aglycemia, and acidosis on cytosolic Mg2+, ATP, and pH in rat sensory neurons.
Sensory neurons can detect ischemia and transmit pain from various organs. Whereas the primary stimulus in ischemia is assumed to be acidosis, little is known about how the inevitable metabolic challenge influences neuron function. In this study we have investigated the effects of anoxia, aglycemia, and acidosis upon intracellular Mg(2+) concentration [Mg(2+)](i) and intracellular pH (pH(i)) in...
متن کاملEffects of cold cardioplegia on pH, Na, and Ca in newborn rabbit hearts.
Many studies suggest myocardial ischemia-reperfusion (I/R) injury results largely from cytosolic proton (H(i))-stimulated increases in cytosolic Na (Na(i)), which cause Na/Ca exchange-mediated increases in cytosolic Ca concentration ([Ca]i). Because cold, crystalloid cardioplegia (CCC) limits [H]i, we tested the hypothesis that in newborn hearts, CCC diminishes H(i), Na(i), and Ca(i) accumulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 22 2 شماره
صفحات -
تاریخ انتشار 1991